medicalai.chief.dataset_prepare¶
datasetFromFolder¶
datasetFromFolder(self,
folder,
targetDim=(31, 31),
normalize=False,
name=None,
useCache=True,
forceCleanCache=False)
TODO: Fix samplingMethodName assignment
datasetGenFromFolder¶
datasetGenFromFolder(self,
folder,
targetDim=(224, 224),
normalize=False,
batch_size=16,
augmentation=True,
color_mode='rgb',
class_mode='sparse',
shuffle=True,
seed=23)
Create a dataset generator from dataset present in Folder.
The folder should consist of test
and train
folders and each of the folders should have n
classes of folders.
Arguments
- folder: The directory must be set to the path where your
n
classes of folders are present. - targetDim: The target_size is the size of your input images to the neural network.
- class_mode: Set
binary
if classifying only two classes, if not set tocategorical
, in case of an Autoencoder system, both input and the output would probably be the same image, for this case set toinput
. - color_mode:
grayscale
for black and white or grayscale,rgb
for three color channels. - batch_size: Number of images to be yielded from the generator per batch. If training fails lower this number.
- augmentation: : [Optional] :
Default = True
: Perform augmentation on Dataset - shuffle: : [Optional] :
Default = True
: Shuffle Dataset - seed: : [Optional] :
Default = 23
: Initialize Random Seed
Returns
None
: Initializes Test and Train Data Generators
datasetGenFromDataframe¶
datasetGenFromDataframe(self,
folder,
csv_path='.',
x_col='name',
y_col='labels',
targetDim=(224, 224),
normalize=False,
batch_size=16,
augmentation=True,
color_mode='rgb',
class_mode='sparse',
shuffle=True,
seed=17)
Arguments
- csv_path: folder containing train.csv and test.csv.
- folder: The directory must be set to the path where your training images are present.
- x_col: Name of column containing image name,
default = name
. - y_col: Name of column for labels,
default = labels
. - targetDim: The target_size is the size of your input images to the neural network.
- class_mode: Set
binary
if classifying only two classes, if not set tocategorical
, in case of an Autoencoder system, both input and the output would probably be the same image, for this case set toinput
. - color_mode:
grayscale
for black and white or grayscale,rgb
for three color channels. - batch_size: Number of images to be yielded from the generator per batch. If training fails lower this number.
- augmentation: : [Optional] :
Default = True
: Perform augmentation on Dataset - shuffle: : [Optional] :
Default = True
: Shuffle Dataset - seed: : [Optional] :
Default = 23
: Initialize Random Seed
Returns
None
: Initializes Test and Train Data Generators